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Study of Some Elastic Properties for Sandwich Bars
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In this paper we determine a field of stress, which verifies the Cauchy equations of equilibrium, the conditions
of continuity on the surfaces between layers, and boundary conditions, for a sandwich bar, with symmetrical
distribution of layers, subject to traction. We have considered the relationships, previously obtained, for a
composite bar built of three layers. Using a mediation formula for deformations and stress, we obtained a
new formula for calculating the longitudinal elasticity modulus, in the case in which the constituent materials
have different coefficients of transversal contraction. We realized the experimental measurements for test
samples from polyesteric resin, reinforced with woven of fibers glass, carbon and glass-carbon.
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The composite plates and the bars may be analyzed
using many theories that differ mostly by including or
neglecting the effects of angular strain and rotational inertia
respectively.

In composite materials containing fibers or particulate
reinforcement the interface separating matrix from
inclusion is widely believed to be a dominant influence
affecting the overall stiffness and damage tolerance
characteristics of the composite. Likewise damage
accumulation in a composite often depends on the
character of the mechanical response of the interface that,
in the case of a weak interface, may precipitate such
separation phenomena as brittle or ductile decohesion. In
many fiber-reinforced composite systems the weak
interfaces are somehow desirable since they generally
raise the toughness, however, are often at the expense of
composite stiffness. Accurate assessment of overall
stiffness characteristics of a composite containing fiber
weakly bonded to the matrix is therefore extremely
important in the attempt to obtain improved composite
performance.

Exact theories rely on a non-linear distribution of shear
stress along the thickness of the plate or bar. The inclusion
of high order terms implies the inclusion of supplementary
unknowns. Moreover, when fulfilling both the parabolic
distribution of shear stress in thickness and the limit
conditions on external surfaces, a correction factor is not
necessary anymore. Based on this fact, it was developed
a theory in [1] (High – order Shear Deformation Theory –
HSDT) where it is assumed that stress and strains normal
to the median plane are null. Another theory in which the
stress is normal to the median plane was considered too,
has been developed in [2-3] and removes a series of
contradictions appearing in previous theories by accepting
non linear factors of shear stress in thickness; they didn’t
also neglect some of the normal stress obtained by the
loading of the composite structure.

In [4] were obtained theoretical results and experimental
determinations. Using a matrix method were determined
the main elastic characteristics of composite materials
and their variation depending on the volumetric proportion
of reinforcement.
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The studies of the composite materials dynamics
reserved a special place for sandwich bars made from
several overlapped layers with similar thickness. Most
studies refer to three layer sandwich bars, the middle layer
having visco-elastic behaviour and the inferior and superior
layers having extra elastic and resilience proprieties. Other
authors having similar studies on the behaviour of these
materials suggested the following:

- there is a continuity of displacements and stress
between layers;

- there is no deformation along the thickness of the bar;
- the transversal inertial forces are dominant, neglecting

longitudinal inertia and rotational inertia of the bar section;
- the external layers have elastic behaviour and are

subject to pure bending and the core has elastic or visco-
elastic behaviour taking over shear stress;

- the core is not subject to normal stress.
Based on these hypotheses have been developed models

considered to be the fundamentals of DTMM theory [5-7].
Considering this theory, it was adapted a variation
approach, obtained equations for sandwich plates taking
also into consideration different angular deformation for
the layers and managing to estimate the stress between
the layers [8].

Interlaminar stresses near free edges of composite bar
are mainly responsible for delamination failures. Numerous
studies have been undertaken to investigate interlaminar
stress and failures of laminated composites. In [9] is studied
the interlaminar tensile strength under static and fatigue
loads including the temperature and moisture effects. In
[10] is studied the effect of geometric nonlinearities on
free-edge stress fields of bars. In [11] is investigated the
response and failure for dropped-ply laminates tested in
flat-end compression, and in [12] was shown that the times
for delamination onset occurrences in composites can be
predicted probabilistically.

Theoretically-obtained results
It is considered a composite bar with a rectangular

section of width b2 , made   of  2p + 1 layers from different
materials, with constant thickness along the length of the
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bar. Arrangement of layers is considered symmetrical to
the median plane. We consider both a mass and elastic
symmetry.

We report the bar to a reference system with axes
oriented as follows:

- the axe x on the longitudinal direction of bar;
- the axe y on the  width direction of the bar;
- the axe z on the thickness direction of bar.
The origin of the reference system is chosen in the

median plane of the bar, which is also the median plane of
layer, numbered with 1 (fig. 1).

           (4)

Taking into account the forms of these components of
stress tensor, in addition for the normal stress  is
considered the following form:

(5)

On separation surface between the layers “ i ” and  “i +
1” (i=1,...,p - 1)  must be satisfied the continuity conditions
for stress, namely:

  (6)

On the exterior surface of plate, the stress must be null,
namely:

            (7)

The continuity conditions for stress on the separation
surface between the layers lead to the following relations:

   (8)

and on the exterior surface:

  (9)

it results that:

     

      (10)

The state of stress is determined with Hooke’s law (it is
considered that each of the layers behaves linearly elastic),
more precisely:

Fig. 1

The bar is subject to a load on the longitudinal direction.
Because, in general, materials that make up the bar layers
have different coefficients of transversal contraction, the
state of stress shall be complex. If the length of the bar is
high as compared to the transversal dimensions, we can
accept that in the middle zone of the bar the stress that
occurs does not depend on the coordinated x. In these
conditions, the equilibrium Cauchy equations have the
following form:

(1)

Due to the symmetry must be satisfied conditions
(relative to the axis y):

 (2)

On the lateral surfaces of the bar we have:

           (3)

Some of these conditions are fulfilled if σxz = σxz = 0.
The remaining conditions are fulfilled if for the rest of the
stress we consider the following representation in
mathematical series (for each layer “i”):
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On the separation surface between the layers „i” and
„i+1” (i =1,..., p-1), must be satisfied the continuity
conditions for deformations, namely:

     (12)

From the continuity conditions for deformations on the
separation surfaces between the layers it results that:

   

where

     (17)

in which    are elastic constants for the
material “i”

Due to the symmetry, the functions   and 
must be uneven in z variable. Without lossing the generality,
the functions  can be considered constants. In this
case, for the layers 2,3,..., p-1, the values of the functions

  must be verified the relations (13) and (14), so
hence the constants   check  p - 2 relations
from type (13) and (14). Thus, only two of them are
independent. In particular these can be   .

In [13] are proposed the mediation formulae for the
tension  σxx and deformation  εxx. With their  help we shall
determine the longitudinal elasticity modulus of the bar,
given by formula:

      (18)

The bar built from three layers
For a bar built from three layers (p=2) are obtained:

If the layers which form the bar are homogenous and
isotropic, then:

      (19)

where  Ei is Young modulus of the material from layer „i”,
and νi is the Poisson coefficient of the material from layer
„i”.

If we neglect the higher order terms, the elasticity
modulus (on longitudinal direction), calculated with relation
(18) is:

     (20)

 (11)

(13)

(14)

(15)

(16)
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where

(21)

We note

      (22)

Parameter  characterizes the way in which stress is
distributed in section.

Using the notations:

     (23)

z1/z2 = V (is volumetric proportion of the layer 1)
we obtain for elasticity modulus EL, the following expresion

                       (24)

where

    (25)

Fig.2

Fig.3

We can check immediately that if  V = 1 (namely the
bar is built just from material ), it results that EL/E1=1, and
hence  EL=E1.  If  V = 0 (namely the bar is built just from
material 2) it results that  EL/E1=1/e, and hence  EL=E2 .

In the case in which the coefficients of transversal
contraction are equal, we obtain:

    (26)

which is the classical formula from calculating the
longitudinal elasticity modulus for unidirectional composite
materials.

Therefore, the relationship for calculating the elasticity
modulus given by (24) is consistent with both the basic
physical considerations (if the bar is built just from material,
then elasticity modulus given by (24), coincides with the
elasticity modulus of the material from which is built the
bar), as well as with the classical relationship for
calculating the longitudinal elasticity modulus for
composite materials.

In figure 2 is presented the variation of the EL=E1  ratio
for  ν2 = 0.2; ν1 = 0.3; x=0.05; e = 0.05 respectivelyex =
0.1 .

In figure 3 is presented the variation of the ratio EL=E1
for  ν2 = 0.2; ν1 = 0.3; x=0.05; e = 0.05 respectively x = 1.



MATERIALE PLASTICE ♦ 48♦ No. 4 ♦ 2011http://www.revmaterialeplastice.ro330

Fig.4

Fig.7
Fig.5

Fig. 6

Table 1

Table 2

It is noted that the factor x  has an insignificant influence,
which can be verified even for x=1.

Experimental determinations
There were made four sets of samples as follows:
- the set of sample 1 built from polyester resin (with

strengthener 3%);
- the set of sample 2 built from polyester resin reinforced

with fiberglass fabric (two layers) with V=0.82;
- the set of sample 3 built from polyester resin reinforced

with carbon fiber fabric (two layers) with V=0.88;
- the set of sample 4 built from polyester resin reinforced

in the exterior layers with carbon fiber fabric (two layers)
and in the median layer reinforced with fiberglass fabric
(two layers) with V=0.5.

Volumetric proportions were determined by weighing
the composite plates, and in parallel, by weighing the fibers
which are into the composition of those plates, we obtained
first of all the mass proportions of the components.

In figure 4 is presented the characteristic curve for a
sample from the first set of samples, in figure 5 is given the
characteristic curve for a sample from the second set of
samples, in figure 6 is given  the characteristic curve for a
sample from the third set of samples, and in figure 7 is
given the characteristic curve for a sample from fourth set
of samples.

In tables 1 and 2 are presented experimental values
obtained for the four sets of samples.

The elasticity modulus calculated with (24) is:
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-for the material from polyester resin reinforced with
fiber glass (set of sample 2)

EL = 15124 MPa

-for the material from polyester resin reinforced with
carbon fiber (set of sample 3)

EL = 29536 MPa

-for the set of sample 4
.

EL = 22330 MPa

At the set of sample 4 we considered  E1  and E2 as the
theoretical elasticity modules, calculated for the sets of
samples 2 and 3.

Conclusions
In the case of sandwich bars, with layers disposed

symmetrically to the median plane, a request of traction
leads to a symmetrical distribution of the stress.

In the case of bars built from three-layers, we can see
that the variation of the elasticity modulus is almost linear
with the volumetric proportion of median layer. The variation
is even linear in the case in which transversal contraction
coefficients for the median layer and outer layers are equal.
If transversal contraction coefficients for the three layers
are different then the variation of elasticity modulus of the
composite, according to the volumetric proportion of
median layer, is nonlinear. Graphics representations shows
however, that we can apply the simplified relationship,
deviations from linearity being very small.

Constitutive equation for composite materials in the form
of sandwich bars with symmetrical distribution of the
layers can be obtained by eliminating the parameter x. In
general case the constitutive equation is nonlinear. If in the
relations which contain the tension tensor components
and deformation tensor components, are neglected the
higher order terms, then we obtain a constitutive equation
which is linear.
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